zigya tab
Advertisement

A circuit containing a 80 mH inductor and a 60 μF capacitor in series is connected to a 230 V, 50 Hz supply. The resistance of the circuit is negligible.
(a) Obtain the current amplitude and rms value.
(b) Obtain the rms values of potential drops across each element.
(c) What is the average power transferred to the inductor?
(d) What is the average power transferred to the capacitor?
(e) What is the total average power absorbed by the circuit? ['Average' implies 'averaged over one cycle'.]


Here,
Inductance, L = 80 mH = 80 x 10-3

Capacitance, C = 60 μF = 60 × 10-6F 
Resistance, R = 0
RMS voltage, Ev = 230 V
Peak voltage, E0 = 2 ×Ev                                = 2 × 230 V 

Frequency of Ac supply,  f = 50 Hz 

  ω = 2πf           = 100  π rad/s 

(a) We have to find I0 = ?,   Iv = ? 

Therefore,
             I0 = E0ωL -1ωL     = 230 2100 π × 80 × 10-3 - 1100 π × 60 × 10-6
   = 230 28π -10006π = 230 2-27.91 = -11.63 amp.
and,

Iv = I02 =-11.631.414 = -8.23 amp. 

 Negative sign appears as ωL<1ωC. 

 e.m.f lags behind the current by 90° 

(b) Rms value of potential drop across L,  

V = Iv × ωL     = 8.23 × 100 π × 80 × 10-3     = 206.74 volt. 

Rms value of potential drop across C,
 V = Iv × 1ωC     = 8.23 × 1100 π × 60 × 10-6     = 436.84 volt. 

As voltages across L and C are 180° out of phase, therefore, they get subtracted.

That is why applied r.m.s. voltage = 436.84 – 206.74
                                                = 230.1 volt. 

(c) Average power transferred over a complete cycle by the source to inductor is always zero because of phase difference of π/2 between voltage and current through the inductor.

(d) Average power transferred over a complete cycle by the source to the capacitor is also zero because of phase difference of π/2 between voltage and current through capacitor. 

(e) Total average power absorbed by the circuit is also, therefore zero.

412 Views

Advertisement

A 100 μF capacitor in series with a 40 Ω resistance is connected to a 110 V, 60 Hz supply.
(a) What is the maximum current in the circuit?
(b) What is the time lav between current maximum and voltage maximum?


Here given,
Capacitance, C = 100 μF = 100 × 10-6F                      = 10-4F 
Resistance, R = 40 Ω 
 
Rms voltage, Ev = 110 voltPeak voltage, E0 = 2. Ev = 2 × 110 V Frequency of Ac supply, v = 60 Hz.,   ω = 2πv = 120π rad/sPeak current, I0 = ? 

a.) In RC circuit,  as
Z = R2+Xc2 = R2+1ω2C2
Therefore,

        I0 = E0R2+1ω2C2    = 2 × 1101600+1120 π × 10-42
       I0 = 3.24 amp. 

b.) In RC circuit, voltage lags behind the current by phase angle ϕ,
where ϕ is given by,

tan ϕ = 1/ωCR          = 1ωCR           = 1120 π × 10-4 × 40           = 0.6628 

 ϕ = tan-1(0.6628) = 33.5 °           = 33.5 π180rad. 
Hence, 

Time lag = ϕω                 = 33.5 π180 ×120 π                 = 1.55 × 10-3 sec.

156 Views

Obtain the answers to (a) and (b) in Exercise 13, if the circuit is connected to a high frequency supply (240 V, 10 kHz). Hence explain statement that at very high frequency, an inductor in circuit nearly amounts to an open circuit. How does an inductor behave in a d.c. circuit after the steady state?

Here given,
Inductance, L = 0.50 H
Resistance, R = 100 Ω 

Rms value of voltage, Vrms = 240 VFrequency of Ac supply, f = 10 kHz = 104 Hz 

Therefore,

Angular frequency, ω = 2πf = 2π × 104 rad s-1Peak voltage, 
                    V0 =2  Vrms      = 2 × 240      = 339.36 V 

Maximum current,
I0 = V0R2+ω2L2 
= 339.36(100)2+2π × 104 × 0.52A= 339.3631416A                                                                (Neglecting R)= 0.01212 A = 1.12 × 10-2A 
This current is much smaller than for the low frequency case (1.82 A in above question), showing that the inductive reactance is very large at high frequencies and inductor in circuit nearly amounts to an open circuit. 
In d.c. circuit (after steady state) ω = 0.
∴ ZL = ωL = 0
i.e., inductance L behaves like a pure inductor.
139 Views

Obtain the answers to (a) and (b) in Question 15, if the circuit is connected to 110 V, 12 kHz supply. Hence explain the statement that a capacitor is a conductor at very high frequencies. Compare this behaviour with that of a capacitor in d.c. circuit after the steady state.

(a) Here,
Effective volatge, E = 110 V
Frequency of Ac supply, f = 12 KHz 

For the high frequency,

ω = 2πf = 2π ×12 × 103 rad s-1. 

Maximum current, I0 = E0R2+1ω2C2 =2 EvR2+1ω2C2 

 I0 = 2 × 1101600+14π2×144×106×10-8A 

       = 1.414 × 1101600+0.0176A = 1.41440A= 3.9 A 

[It may be noted that the capacitor term is negligible at higher frequencies.] 

(b) Now, phase lag 

tan ϕ =1ωCR        = 12π ×12×103 ×10-4×40         = 196 π

i.e., we can see that, ϕ is nearly zero at high frequency.

It is clear from here that at high frequency, capacitor acts like a conductor.
For a D.C. circuit, after steady state has been reached, ω = 0.
Hence, χC = 1ωC = 
Therefore, capacitor C amounts to an open circuit.

122 Views

Keeping the source frequency equal to the resonating frequency of the series LCR circuit, if the three elements L, C and R are arranged in parallel, show that the total current in the parallel LCR circuit is minimum at this frequency. Obtain the current rms value in each branch of the circuit for the elements and source specified in Exercise 11 for this frequency.


Given, an LCR circuit. L, C and R are arranged in parallel and the source frequency is kept equal to the resonating frequency.

Then,

Using the formula for resonant frequency,
ωr = 1LC      = 15 ×80×10-6     = 1400 × 10-6      = 50 rad s-1 

Since elements are in parallel, reactance X of L and C in parallel is given by 

1X = 1ωL = 11/ωC= 1ωL-ωC 

Impedance of R and X in parallel is given by
                                 1Z = 1R2+1X2 = 1R2+1ωL-ωC2
                    1Z = 1+R21ωL-ωC2R  

                      Z =  R1+R21ωL-ωC2 

which is less than resistance R.  

At resonant frequency,

                                      ωL = 1ωC   or   ωC = 1ωL 

and       1ωL-ωC = 0 

Then, impedance Z = R and will be maximum.

Hence, current will be minimum at resonant frequency in the parallel LCR circuit.

From Ex. 11: 

Inductance, L = 5H
Capacitance, C = 80 × 10
–6 F
Resistnace, R = 40 Ω.
 Erms = 230 V. 

Therfore,

IRrms = VrmsR = 23040 = 5.75 A.(IL)rms = VrmsωL = 23050 × 5 = 0.92 A.(IC)rms = Vrms1/ωC = 230 × 50 × 80 × 10-6 = 0.92 A.

Current through L and C will be in opposite phase. Hence, current in circuit will be only 5.75 A= VrmsR as, circuit impedance will be equal to R only.

176 Views

Advertisement